
J. Fluid Mech. (2013), vol. 736, pp. 570–593. c© Cambridge University Press 2013 570
doi:10.1017/jfm.2013.551

Time-dependent, non-monotonic mixing in
stratified turbulent shear flows: implications for

oceanographic estimates of buoyancy flux

A. Mashayek1,†, C. P. Caulfield2,3 and W. R. Peltier1

1Department of Physics, University of Toronto, Ontario, M5S 1A7, Canada
2BP Institute, University of Cambridge, Madingley Road, Cambridge CB3 0EZ, UK

3Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Centre for
Mathematical Sciences, Wilberforce Road, Cambridge CB3 0WA, UK

(Received 28 March 2013; revised 7 October 2013; accepted 14 October 2013;
first published online 11 November 2013)

We employ direct numerical simulation to investigate the efficiency of diapycnal
mixing by shear-induced turbulence in stably stratified free shear layers for flows
with bulk Richardson numbers in the range 0.12 6 Ri0 6 0.2 and Reynolds number
Re = 6000. We show that mixing efficiency depends non-monotonically upon Ri0,
peaking in the range 0.14–0.16, which coincides closely with the range in which both
the buoyancy flux and the dissipation rate are maximum. By detailed analyses of the
energetics of flow evolution and the underlying dynamics, we show that the existence
of high mixing efficiency in the range 0.14 < Ri0 < 0.16 is due to the emergence of
a large number of small-scale instabilities which do not exist at lower Richardson
numbers and are stabilized at high Richardson numbers. As discussed in Mashayek
& Peltier (J. Fluid Mech., vol. 725, 2013, pp. 216–261), the existence of such a
well-populated ‘zoo’ of secondary instabilities at intermediate Richardson numbers and
the subsequent high mixing efficiency is realized only if the Reynolds number is
higher than a critical value which is generally higher than that achievable in laboratory
settings, as well as that which was achieved in the majority of previous numerical
studies of shear-induced stratified turbulence. We furthermore show that the primary
assumptions upon which the widely employed Osborn (J. Phys. Oceanogr. vol. 10,
1980, pp. 83–89) formula is based, as well as its counterparts and derivatives, which
relate buoyancy flux to dissipation rate through a (constant) flux coefficient (Γ ), fail
at higher Richardson numbers provided that the Reynolds number is sufficiently high.
Specifically, we show that the assumptions of fully developed, stationary, and isotropic
turbulence all break down at high Richardson numbers. We show that the breakdown
of these assumptions occurs most prominently at Richardson numbers above that
corresponding to the maximum mixing efficiency, a fact that highlights the importance
of the non-monotonicity of the dependence of mixing efficiency upon Richardson
number, which we establish to be characteristic of stratified shear-induced turbulence.
At high Ri0, the lifecycle of the turbulence is composed of a rapidly growing phase
followed by a phase of rapid decay. Throughout the lifecycle, there is considerable
exchange of energy between the small-scale turbulence and larger coherent structures
which survive the various stages of flow evolution. Since shear instability is one of
the most prominent mechanisms for turbulent dissipation of energy at scales below
hundreds of metres and at various depths of the ocean, our results have important
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implications for the inference of turbulent diffusivities on the basis of microstructure
measurements in the oceanic environment.

Key words: shear layer turbulence, stratified flows, turbulent mixing

1. Introduction
Quantification of the diapycnal turbulent flux of tracers and momentum in an

environment that is stably stratified in density has come to be intensively investigated
over the past several decades in both the atmospheric and oceanographic literature. In
the oceanographic context especially, the vertical flux of buoyancy remains a primary
focus since such diapycnal mixing is a primary mechanism which facilitates upwelling
of abyssal waters to the surface, thereby enabling closure of a meridional overturning
circulation (see e.g. Wunsch & Ferrari 2004). A key quantity of interest for the
quantification of diapycnal mixing is the percentage of the kinetic energy available to
turbulence which contributes irreversibly to the vertical buoyancy flux. This quantity
is often referred to as the mixing efficiency, or flux Richardson number, Rif , and
is generally assumed to be in the range Rif ∼ 0.15–0.2 despite the growing body
of literature demonstrating that it varies over a wide range of values depending on
the nature of the dynamical processes involved (Caulfield & Peltier 2000; Smyth,
Moum & Caldwell 2001; Peltier & Caulfield 2003; Ivey, Winters & Koseff 2008).
The most widely used relation (due to Osborn 1980) in practical oceanography to
estimate a vertical effective diapycnal diffusivity from local measurements of the rate
of dissipation of kinetic energy (E ) and the buoyancy frequency profile (N) is

κ = Rf

1− Rf

E

N2
= Γ E

N2
, (1.1)

which is employed along with the flux coefficient itself (often inaccurately referred
to as a mixing efficiency) which is assumed to have the value Γ ≈ 0.2. Central to
the application of this model are three key assumptions, which we refer to as follows:
assumption ‘F’, that the vertical diffusivity is dominated by fully developed turbulence;
assumption ‘S’, that the turbulence exhibits a quasi-steady balance between production,
dissipation and diapycnal mixing; and assumption ‘I’, that the turbulence is isotropic.
At least in the context under consideration of transition induced by shear instability,
the validity of each of these assumptions is strongly undermined by the analyses to
follow.

The specific numerical value for Γ proposed by Osborn (1980) was strongly
influenced by experimental measurement (Britter 1974; Koop 1976), and there has
been a very wide range of experimental studies of mixing efficiency: see the reviews
of Linden (1979), Fernando (1991) and Ivey et al. (2008), and, for example Ivey
& Imberger (1991), Park, Whitehead & Gnanadeskian (1994), Strang & Fernando
(2001), Rehmann & Koseff (2004), Prastowo et al. (2008), Stretch et al. (2010) and
Oglethorpe, Caulfield & Woods (2013). The evidence points strongly towards the
flux coefficient Γ not being constant, but rather a non-monotonic function of the
overall stratification, as quantified by an appropriately chosen ‘Richardson number’,
quantifying the relative significance of potential energy and kinetic energy in the flow.
Of course, the choice of this Richardson number depends on the central characteristics
of the flow of interest since, as noted by Fernando (1991), the physical mechanisms
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572 A. Mashayek, C. P. Caulfield and W. R. Peltier

of entrainment and mixing across sheared and unsheared density interfaces are
qualitatively different.

Such non-monotonicity is of interest since, as originally postulated by Phillips
(1972), it may lead to the development of the density staircase structures required
to explain at least some observations on layering in nature. The Phillips mechanism
was described in terms of a Richardson number which included the influence of both
background shear and stratification, yet some subsequent research has suggested that
the key aspect of this layer formation mechanism does not rely on the flow being
subject to vertical shear but rather that the density, or equivalently the buoyancy
flux, is a non-monotonic function of the local density gradient, normalized by some
measure of the local turbulent kinetic energy (Posmentier 1977; Linden 1980; Park
et al. 1994; Holford & Linden 1999; Oglethorpe et al. 2013). Nevertheless, as
observed by Strang & Fernando (2001), for example, non-monotonic variation of
mixing efficiency with Richardson number does occur in stratified shear flows.

However, the basic observation that Γ depends non-monotonically on Richardson
number (in the stratified shear layer context) is not the only way in which it varies
with the external, larger-scale properties of the flow. There is also increasing evidence
that there is a significant dependence of Γ on some appropriate measure of the
intensity of the turbulence, typically quantified by values of the ‘buoyancy’ Reynolds
number Reb, defined as

Reb = E

νN2
. (1.2)

See for example Ivey & Imberger (1991), Shih et al. (2005), Wells, Cenedese
& Caulfield (2010) and Lozovatsky & Fernando (2012). This point is particularly
significant, as there is a marked difference between the accessible Reynolds numbers
in the laboratory and those which are actually characteristic of nature. To quote Ivey
et al. (2008), ‘Both laboratory and DNS work indicate that at these extremes, when
either E /νN2 ∼ O(1) or E /νN2 ∼ O(105), the mixing efficiency Rf → 0 and the use of
large Rf ' 0.2 in field situations in these limits cannot be justified. This is not simply a
matter of curiosity. There is a fundamental inconsistency between the results from the
laboratory and DNS experiments and the inference of diffusivity from microstructure
in the field that remains unresolved.’

This inconsistency must at least in part be due to an incomplete understanding
of the dominant physical mechanisms of mixing at higher Reynolds number. This
issue is particularly pressing for the canonical flow of a stratified, shear-driven,
mixing layer, as the classical ‘tilted tank’ experimental geometry originally used
by Osborne Reynolds and subsequently popularized by Thorpe (1968) (see also
Thorpe 1973) is typically strongly constrained in Reynolds number, as well as being
inevitably contaminated by flow acceleration, initialization difficulties (see for example
Patterson et al. 2006) and end effects, which make it extremely difficult to make
quantitative inferences in the laboratory concerning the mixing actually associated
with the transition of Kelvin–Helmholtz (KH) billows to turbulence at sufficiently
high Re. As noted by Smyth et al. (2001), at lower Re a substantial amount of
‘mixing’ leading to irreversible increases in the potential energy of the system can
occur in the ‘preturbulent’ phase of flow evolution, before the dissipation rate becomes
elevated substantially above laminar values. It is an open question as to whether that
picture is relevant at higher Reynolds number, as increased intensity in the turbulence,
and hence an elevated dissipation rate E will affect the irreversible mixing in a
non-trivial way. However, very recently, Mashayek & Peltier (2013) (hereafter MP13)
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Non-monotonic mixing in stratified mixing layers 573

described numerical simulations of the evolution of the stratified mixing layer at
substantially higher Reynolds numbers Re = U0d/ν (where 2U0 is the total velocity
difference across the layer of characteristic total thickness 2d, and ν is the fluid’s
kinematic viscosity) than are accessible in the laboratory. Their analyses showed that
as Re→ 104, the mixing efficiency associated with the full turbulent lifecycle of an
initial shear instability can approach values as high as 0.45 and that the efficiency
associated with the fully developed turbulent phase of the flow approaches ∼1/3.

Intriguingly, and perhaps suggestive of a generic behaviour of stratified mixing
events at sufficiently high Reynolds number, this result is consistent with the
prediction of Caulfield, Tang & Plasting (2004). They identified a rigorous upper
bound as a function of Reynolds number on the long-time average of the vertical
buoyancy flux in stratified plane Couette flow between two horizontal plates, separated
by a distance d, which maintain the boundary fluid with constant background
streamwise velocity difference 1U and density difference 1ρ. As Re ∝1Ud/ν→∞,
they found that the notional flow associated with this upper bound on the buoyancy
flux had an implied mixing efficiency Rif → 1/3 as Re→∞. Furthermore, Tang,
Caulfield & Kerswell (2009) have identified further properties of this notional flow,
namely that the upper bound on the long-time average of the buoyancy flux implies a
notional flow which has Ri0 = 1/6, where

Ri0 = g1ρd/(ρ01U2) (1.3)

is a ‘bulk’ Richardson number with g the acceleration due to gravity and ρ0 a
reference density. However, there is no guarantee that this bound is attained, or indeed
that this notional flow actually exists, and this approach reveals nothing about the
dynamical behaviour of the turbulence which actually leads to this mixing.

Faced with these unresolved issues in the literature, this paper has four central aims.
Firstly, we want to gain insight into the actual physical mechanisms by which mixing
occurs in sufficiently high Re stratified mixing layers to allow for the proliferation
of the ‘zoo’ of secondary instabilities, discussed at length in MP13. Specifically,
we extend the analyses of MP13 herein in order to evaluate mixing efficiency for
Richardson numbers in the range 0.12 6 Ri0 6 0.2. This range is also relevant in
the oceanographic context in which shear instability is often observed to emerge
locally once the gradient Richardson number falls below the critical value of 1/4
(Howard 1961; Miles 1961), due, for example, to transient increase in the background
shear. Our second, closely related, aim is to determine whether the existence of
different physical mixing mechanisms that become accessible to the flow as the initial
Richardson number is varied is the ultimate cause of the non-monotonic dependence of
mixing efficiency upon this parameter. Given that the mixing efficiency will be found
to be a non-monotonic function of the Richardson number, our third aim is to establish
whether the associated maximum does occur near Ri0 = 0.16. Our final aim is to use
this understanding to critique the classic model for Γ of Osborn (1980), assessing
whether for stratified mixing layers the three central assumptions ‘F’, ‘S’ and ‘I’
are ever appropriate descriptions of the turbulence and attendant irreversible mixing.
To achieve these aims, the rest of this paper is organized as follows. After defining
various quantities and describing our numerical model in § 2, in § 3 we analyse the
properties of our simulations, focusing in particular on the varying phenomenology of
mixing as Ri0 increases. Finally, in § 4 we discuss the significance of our results for
the modelling of mixing in stratified mixing layers, confirming that the properties of
the turbulence bear little resemblance to those assumed in the classical Osborn (1980)
model.
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Re Ri0 Pr Lx Ly Lz Nx Ny Nz

6000 0.12 1 14.28 3 and 6 30 1280 256 and 512 1216
6000 0.14 1 14.28 3 and 6 30 1280 256 and 512 1216
6000 0.16 1 14.28 3 30 1280 256 1216
6000 0.18 1 14.28 3 30 1280 256 1216
6000 0.20 1 14.28 3 30 1280 256 1216

TABLE 1. Details of three-dimensional numerical experiments.

2. Theoretical preliminaries
We consider temporal evolution of a horizontally periodic stably stratified shear

layer. Closely following the formulation and analyses of MP13, the initial background
profiles of the velocity and density fields are assumed to be

Ū(z)= U0 tanh
( z

d

)
, ρ̄(z)= ρ0 −1ρ tanh

( z

d

)
, (2.1)

where U0 is reference velocity and where x, y and z denote the streamwise, spanwise
and vertical directions respectively. The dimensionless equations of motion, continuity
and energy conservation in the Boussinesq approximation are

Dui

Dt
=− ∂p

∂xi
− Ri0ρδi3 + 1

Re

∂2ui

∂x2
j

, (2.2)

∂ui

∂xi
= 0, (2.3)

Dρ
Dt
= 1

Re Pr

∂2ρ

∂x2
j

, (2.4)

where i, j = 1, 2, 3. We numerically integrate these governing equations using the
same methodology as that described in MP13. In short, a pseudo-spectral direct
numerical simulation (DNS) methodology is employed which ensures conservation
of mass, momentum and energy. The computational domain is assumed to be periodic
in both horizontal directions, and thus is treated using a spectral representation, while
a second-order finite volume discretization is employed in the vertical. For all of the
cases to be discussed herein we set the Reynolds number to 6000, which is sufficiently
high to ensure emergence of all the high Reynolds number secondary instabilities
introduced in Mashayek & Peltier (2012a,b) as well as the consequent prohibition of
the vortex pairing mechanism as described in MP13. We may therefore, without loss
of generality, set the streamwise scale of our numerical domain to a single wavelength
(Lx = 14.28) of the most unstable mode of linear shear instability (e.g. Hazel 1972).
We also set the Prandtl number Pr = ν/κ = 1, where κ is the thermal diffusivity.
Table 1 provides the required information concerning the three-dimensional numerical
experiments to be analysed in the subsequent sections. The case with Ri0 = 0.12 is
similar to one of the cases discussed in MP13. For cases with Ri0 = 0.12 and 0.14,
simulations were carried out for two spanwise domain extents to ensure that the
spanwise domain was sufficiently broad to house all of the fastest growing modes of
secondary instability. In all cases the vertical extent was set to Lz = 30, with no normal
flow and no tangential stress boundary conditions imposed, so that the presence of
these boundaries would have no discernible effect on flow evolution.
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Non-monotonic mixing in stratified mixing layers 575

For our simulations, the effective (peak) buoyancy Reynolds number Reb as defined
in (1.2) (with buoyancy frequency defined as N = √−(g/ρ0) ∂zρ ) is in the range
100 . Reb . 300, which partially overlaps with the range in which energetic stratified
turbulence is known to exist in the ocean (Smyth & Moum 2000).

To facilitate detailed analysis of the flow field, we calculate a hierarchy of velocity
fields through spatial averaging, namely

Ū(z, t)= 〈u〉xy, (2.5)

(u, v,w)(x, t)= (Ū + u2D + u3D, v3D,w2D + w3D), (2.6)

(u2D, 0,w2D)(x, z, t)= 〈(u− Ū, v,w)〉y, (2.7)

(u3D, v3D,w3D(x, y, z, t)= (u− Ū − u2D, v,w− w2D), (2.8)

where 〈.〉p denotes averaging in the p direction. Physically, the non-parallel two-
dimensional velocity field (u2D, 0,w2D) is associated initially with the primary KH
billow. By substituting these expansions into the momentum equation, and by
calculating the inner product of the resulting equation with the total velocity vector,
we obtain an equation for kinetic energy, which can be decomposed into mean and
turbulent components. The derivation is straightforward and follows the standard
procedure of derivation of the turbulent energy balances. For further detail see
Klaassen & Peltier (1985). The resulting evolution equation for the total kinetic energy
is

σ = 1
2K

d
dt

K =−H −D, (2.9)

where σ is the time rate of change of the total kinetic energy K . The buoyancy
flux, H , and the positive definite viscous dissipation rate, D (effectively the non-
dimensional, spatially averaged representation of the dissipation rate E ), are defined
as

H = Ri0

2K
〈ρw〉xyz, D = 1

2K Re
〈2EijEij〉xyz =

1
2K
〈E 〉xyz, (2.10)

where 〈.〉xi
denotes averaging in the direction xi and E is the strain rate tensor for the

horizontally averaged velocity defined as

Eij = 1
2

(
∂Ūi

∂xj
+ ∂Ūj

∂xi

)
for i= 1, 2. (2.11)

The evolution equation for the kinetic energy associated with the three-dimensional
perturbation velocity field is found to have the form (see Appendix for derivation):

σ3D = 1
2K3D

d
dt

K3D =R3D +S h3D +A −H3D −D3D, (2.12)

where K3D = 1/2(u2
3D + v2

3D + w2
3D). Here R3D represents extraction of energy from the

background mean shear by means of Reynolds stresses and is defined as

R3D =− 1
2K3D

〈
u3Dw3D

∂Ū

∂z

〉
xyz

, (2.13)

S h3D represents shear extraction of energy from the background large-scale inherently
two-dimensional structures such as the KH billow (and so would vanish in an isotropic
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flow) and is given by

S h3D =− 1
2K3D

〈
u3Dw3D

(
∂w2D

∂x
+ ∂u2D

∂z

)〉
xyz

, (2.14)

A is a further measure of anisotropy, representing the stretching deformation
associated with the three-dimensional perturbation velocity, and is defined as

A =− 1
4K3D

〈
(u2

3D − w2
3D)

(
∂u2D

∂x
− ∂w2D

∂z

)〉
xyz

, (2.15)

and H3D and D3D are the buoyancy flux and viscous dissipation terms associated with
three-dimensional perturbations and are defined, respectively, by

H3D = Ri0

2K3D
〈ρ3Dw3D〉xyz, (2.16)

D3D = 1
2ReK3D

〈2eijeij〉xyz, (2.17)

where e is the fluctuation strain rate tensor defined as

eij = 1
2

(
∂ui

∂xj
+ ∂uj

∂xi

)
. (2.18)

To quantify diapycnal mixing, a cumulative mixing efficiency (ηc) is defined
following Caulfield & Peltier (2000) as

ηc =

∫ tf

t1

M (t′) dt′∫ tf

t1

M (t′) dt′ −
∫ tf

t1

D(t′) dt′
, (2.19)

where M represents irreversible diapycnal mixing and tf marks the end of one
lifecycle of the shear instability. M is determined from the time rate of change in
the background potential energy, where the background potential energy is calculated
using a sorting methodology similar to that employed by Winters et al. (1995),
Caulfield & Peltier (2000) and Peltier & Caulfield (2003). For t1 = 0, (2.19) gives
an efficiency for the whole lifecycle, whereas if t1 is set to the time of onset of
fully developed turbulence, (2.19) results in an efficiency corresponding to the fully
turbulent phase of the flow. As already noted in the Introduction, ‘preturbulent’ mixing,
when D is small, may be very ‘efficient’ due to the denominator in expressions such
as (2.19) being relatively small, but of central interest to us is in which specific period
during the evolution of the flow does the dominant contribution to mixing occur, and
what is the mixing efficiency that is achieved during this period.

At this point we can revisit the assumptions behind the Osborn (1980) method of
calculating an effective diffusivity through neglect of various terms in (2.12). These
three previously mentioned assumptions consist of assumption ‘F’ of fully developed
turbulence, assumption ‘S’ of stationary turbulence and assumption ‘I’ of isotropic
turbulence. Beginning from (2.12), assumption ‘S’ corresponds to the neglect of the
time derivative on the left-hand side while assumption ‘I’ requires the elimination
of the explicitly anisotropic terms S h3D and A , resulting in a three-term balance
between shear production (R3D), turbulent buoyancy flux (H3D) and dissipation (D3D)
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in the form

R3D =H3D +D3D. (2.20)

By defining a turbulent flux Richardson number as

Rif =H3D/R3D, (2.21)

and by relating the vertical turbulent buoyancy flux 〈ρw3D〉 to a mean background
gradient dρ̄/dz through the introduction of an effective turbulent diffusivity,
rearranging (2.20) leads directly to (1.1). As one of the primary aims of this paper
we seek to investigate the validity of the assumptions leading to elimination of the
additional terms in (2.12) in the range of bulk Richardson numbers which is believed
to be most relevant to the understanding of energetically turbulent oceanic shear zones.

3. Analyses
Figure 1 illustrates the turbulence transition phase of flow evolution for each of the

simulations considered herein by providing contour plots of both density and rate of
dissipation of kinetic energy. The contour plots have been made for the mid-plane in
the spanwise direction. Although these figures are instructive for determining the form
and localization of the structures leading to dissipation and mixing, it is also useful to
consider visualizations of the vorticity field, due to the key role of vorticity dynamics
in the finite amplitude form of the various instabilities, as well as the ensuing
turbulent mixing. Therefore, we also plot iso-surfaces of vorticity (both streamwise
and spanwise) for the same cases in figure 2, and interpret the flow evolution by
consideration of both sets of figures together. Indeed, in the supplementary section
available at http://dx.doi.org/10.1017/jfm.2013.551 which accompanies this paper we
have provided a series of animations which the interested reader may use to gain
further insight into the shear-induced turbulent flows that are the subject of study
in this paper. Taken in combination, these figures and the supplementary animations
illustrate clearly a central challenge of interpretation of stratified mixing layers at
sufficiently high Reynolds numbers. As the bulk Richardson number increases, the
amplitude of the primary KH billow decreases, with several complicated consequences.
The types of secondary instabilities which develop on the evolving billow clearly
change, and it is by no means obvious whether the mixing is dominated by the effects
of the primary larger-scale overturning, by secondary instabilities which develop as the
primary billow grows, or by secondary (or indeed tertiary) instabilities ‘catalysed’ by
the non-parallel billow when it is essentially at its saturated amplitude, as was argued
to be the case for the low Re, low Ri0 flows considered by Caulfield & Peltier (2000).

Focusing on the first two cases with Ri0 = 0.14 and 0.16, the evolution of the flow
is similar to that of the case with Ri0 = 0.12 discussed at length in MP13, in that
following saturation of the primary KH billow, a number of secondary instabilities
emerge and facilitate turbulent breakdown of the billow. The most prominent of these
secondary instabilities are: (i) the secondary convective instability of the cores (SCI),
illustrated by purple and green streamwise vortex tubes in figure 2; (ii) the secondary
shear instability (SSI) which forms on the braid (the strained vorticity layer connecting
adjacent vortices in a train of KH billows), and is visualized by the grey iso-surface
of spanwise vorticity in figure 2; (iii) the stagnation point instability (SPI) which is
also visualized by the grey spanwise vorticity surfaces as the largest vortex on the
braid at the leftmost edge of the domain in figure 2(a). (For more information on
the SCI refer to Klaassen & Peltier (1985) and for the other instabilities refer to
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(a)

(b)

(c)

(d)

0 0.5 1.0 1.5 2.0

0 4 8 10

FIGURE 1. Time evolution of flow during the transition phase. For each Ri0 value, the upper
panels show contours of density and the lower panels show contours of the rate of dissipation
of kinetic energy. The colour maps for both contours are linear. (a) Ri = 0.14; (b) Ri = 0.16;
(c) Ri= 0.18; (d) Ri= 0.20.

MP13.) Comparing the Ri0 = 0.14 and 0.16 cases in figures 1 and 2 to the results for
Ri0 = 0.18 and 0.2 shows that the increase in the bulk Richardson number acts so as to
suppress the braid-localized instabilities (SSI and SPI), leaving the SCI as the primary
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Non-monotonic mixing in stratified mixing layers 579

(a)

(b)

(c)

(d)

FIGURE 2. Time evolution of flow during the transition phase. The plots show contours of
vorticity: grey surfaces represent spanwise vorticity (i.e. in the direction normal to the plane
of the original two-dimensional Kelvin–Helmholtz billow) and the green and purple surfaces
represent positive and negative streamwise (i.e. in the same direction as the background shear)
vorticity, respectively. The structures on the braid (shown in grey) represent the secondary
shear instability (SSI) and stagnation point instability (SPI), while the streamwise vortices of
purple and green colours in the vortex cores represent the secondary convective instability
(SCI). For a description of these instabilities, as well as the mathematical formulation of the
various vorticity components plotted in this figure, see MP13. (a) Ri0 = 0.14; (b) Ri0 = 0.16;
(c) Ri0 = 0.18; (d) Ri0 = 0.20.
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0.92

0.94

0.96

0.98

1.00

10–4

10–4

10–6

10–2

10–2

50 100 150 200 250

(a)

(b)
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t
0 300

FIGURE 3. Time evolution of the total kinetic energy of the flow (a), kinetic energy
associated with the roll-up of the two-dimensional KH billow (b) and kinetic energy
associated with the three-dimensional perturbation field (c). All quantities are scaled by the
total kinetic energy in the system at time t = 0.

mechanism responsible for transition. Mashayek & Peltier (2012b) investigated the
influence of bulk Richardson number on the evolution of each of the individual
secondary instabilities and demonstrated that their growth rates peak at intermediate
values of Ri0. While at low Ri0 the SSI and SPI do not emerge, essentially due to
the stratification being too weak to generate sufficiently intense baroclinic vorticity, at
high Ri0 (0.2 or higher) they do not appear due to the increased stabilizing influence
of high Richardson number on the inevitable vertical velocity perturbations associated
with these instabilities. It is only at some intermediate value of Ri0 that the ‘zoo’ of
secondary instabilities is most densely populated, and this we believe is at the heart of
the non-monotonicity of the dependence of mixing efficiency upon Richardson number.
We explore this further below when we discuss quantitatively the flow energetics, as it
is not immediately clear that enhanced turbulent dissipation in and of itself will lead to
more, or indeed more efficient, mixing.

As a first step in the quantitative consideration of the flow energetics, figure 3
illustrates the time evolution of the total kinetic energy (figure 3a), the kinetic
energy associated with the two-dimensional primary KH billow (figure 3b) and the
kinetic energy of the three-dimensional perturbation field (figure 3c) for each of the
different flows. As the flow evolves, the energy required for the roll-up of the KH
billow and for growth of the three-dimensional perturbation field is provided by the
background kinetic energy. After turbulence transition, KKH and K3D decay and the
flow relaminarizes. The loss in the total kinetic energy after relaminarization amounts
to a net rise in the background potential energy, which we identify as involving
irreversible diapycnal mixing. Inspecting the magnitude and the timing of the peaks
of the KKH curves (hereafter referred to as tS

2D) it is clear that increasing Richardson
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Non-monotonic mixing in stratified mixing layers 581

number monotonically decreases the saturated magnitude of the primary billows, and
monotonically increases the saturation time tS

2D. Furthermore, the timing of the peaks
of the K3D curves (hereafter referred to as tS

3D) also increases monotonically with Ri0.
From this point on, we will refer to the time period prior to tS

2D as the ‘preturbulent’
phase of flow evolution, to the period between tS

2D and tS
3D as the ‘transition’ phase,

and to the period beyond tS
3D as the ‘fully developed turbulent’ phase, or simply as the

turbulent phase.
All these observations are consistent with the intuitive concept that stratification,

appropriately normalized by the flow kinetic energy and hence quantified by the bulk
Richardson number Ri0, may be thought of as a stabilizing effect on flow instability
if we may assume that the magnitude of the shear is fixed. However, more careful
consideration of the plots shows that the effect of increasing Richardson number
is actually much more subtle and complex. The times of onset of growth of the
three-dimensional perturbations (hereafter referred to as tO

3D) shows that while at low
Ri0 perturbations begin to grow after saturation of the KH billow (i.e. tO

3D > tS
2D, as

was discussed in MP13), as Ri0 increases to 0.14 and beyond, secondary modes
actually begin to grow earlier with respect to t2D (noting that while the time of
onset of a secondary instability is sensitive to the initial conditions employed in a
simulation, as long as similar initial conditions are applied to cases with different
Ri0, the above argument holds). Therefore, at lower Ri0, the vortex cores have
enough time to evolve fully, and hence ‘catalyse’, and thereafter host a large number
of secondary instabilities, whereas at higher Ri0, perturbations grow early in flow
evolution and before the cores build the potential to host multiple instabilities. The
results of our new numerical simulations taken together with those discussed in MP13
(which together span the range 0.04 < Ri0 < 0.2) reveal that diapycnal mixing is most
efficient at Ri0 ≈ 0.16, at least for a Prandtl number of unity. The two sets of results
together show that at this optimal value of Ri0, the largest number of secondary
instabilities emerge on the primary KH billow and facilitate efficient mixing. The
range 0.1 < Ri0 < 0.18 seems to be the richest in terms of the number of secondary
instabilities facilitating mixing. Figure 3 reveals that the largest transfer of energy
from K and KKH into K3D occurs in this range, which might be suggestive of
the most efficient mixing occurring at this Richardson number. At Ri0 = 0.16, the
primary billow is sufficiently large and stratified to sustain vigorous mixing induced
by secondary instability, while it is not too strongly stratified to delay the emergence
and limit the vigour of secondary instabilities. Therefore, at Ri0 = 0.16 the secondary
instabilities emerge precisely at the time that the available potential energy (APE) is
at its peak, and use this APE to mix the density field most efficiently. Ri0 = 0.16 is
associated with the maximum value of K3D. Perhaps more significantly, the ultimate
value of the total kinetic energy K is actually minimum for the flow with this Ri0,
showing the largest loss of kinetic energy to both viscous dissipation and diapycnal
mixing, which is suggestive at least of the most intense turbulent activity for this flow.

Deeper understanding of the role of the underlying dynamics on the mixing process
requires a detailed analysis of the flow energetics, through consideration of the time-
evolution of both perturbations and mean flow. Of particular interest will be whether
there is evidence of the ‘lag’ postulated by Barenblatt et al. (1993) to regularize flows
where the amount of mixing varies non-monotonically with stratification, perhaps
equivalent in the case considered here to a non-monotonic variation with Ri0. To
facilitate this, in figure 4 we plot the various contributions to the growth rate of
both the total and the turbulent kinetic energy reservoirs defined in (2.9) and (2.12).
Moreover, to facilitate further interpretation of the results of figure 4, in figure 5 we
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FIGURE 4. (a,c,e,g) Time evolution of various contributors to growth of the turbulence as
defined in (2.12). (b,d,f,h) Time evolution of contributors to the total kinetic energy as defined
in (2.9) as well as the total mixing. tO

2D and tS
2D mark the onset and saturation of growth

of the primary KH billow while tO
3D and tS

3D mark onset and saturation of growth of the
three-dimensional perturbation field. (Note that the range of the vertical axis in the last
row has been halved.) To facilitate comparison of various terms in (2.9) and (2.12) in the
same figure, all terms in the two relations have been normalized by the total kinetic energy.
(a,b) Ri0 = 0.14; (c,d) Ri0 = 0.16; (e,f ) Ri0 = 0.18; (g,h) Ri0 = 0.20.
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FIGURE 5. Normalized cross correlation functions (defined in (3.1) between total diapycnal
mixing, M , and various other quantities defined in (2.9)–(2.12), plotted as functions of the
correlation time lag τ . (a) Ri0 = 0.14; (b) Ri0 = 0.16; (c) Ri0 = 0.18; (d) Ri0 = 0.20.

plot normalized two-point cross-correlation functions of various of these contributions,
in order to provide information concerning both the relative timing of various
processes, but also, crucially, their duration. Mathematically, the cross-correlation of
functions f (t) and g(t) is simply defined as

(f ? g)(t)=
∫ ∞
−∞

f ∗(τ )g(t + τ) dτ, (3.1)

where f ∗ denotes the complex conjugate of f . The correlation coefficients plotted in
figure 5 are normalized in such a way that the autocorrelation of each of f and g
are identically unity at zero lag. In the discussion below, we interpret figures 4 and 5,
together.

For Ri0 = 0.14, prior to saturation of the KH billow, three-dimensional instabilities
begin growing at tO

3D (see figure 4a) and they saturate at tS
3D. Prior to tO

3D, a large
increase in the buoyancy flux (see figure 4b) leads to the accumulation of APE in
the billows. During the time period between tO

3D and tS
3D, this APE is transformed into

kinetic energy associated with the rise of a number of three-dimensional instabilities
which facilitate significant diapycnal mixing. For this case (Ri0 = 0.14), that rise in
three-dimensionality (see σ3D in figure 4a) is coincident with a large negative buoyancy
flux (see the minimum of the green curve in figure 4b) which is due to convective
instability of the vortex cores. This large exchange of APE back into kinetic energy
also leads to the local maximum in total kinetic energy apparent in figure 3(a), which
only occurs for this relatively low Ri0 simulation. This mixing through convection
driven by APE conversion is known to be a characteristic of stratified KH mixing at
low to intermediate Ri0 (Klaassen & Peltier 1985; Caulfield & Peltier 2000, MP13).
The rise in the magnitude of the S h3D curve in figure 4(a) is a manifestation of
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the secondary ‘braid’ instabilities such as the secondary shear instability (SSI) and
stagnation point instability (SPI) discussed above.

At higher Ri0, the strong growth of these braid modes (which was predicted
by Mashayek & Peltier 2012a,b) dramatically changes the nature of the diapycnal
mixing. To demonstrate this, we compare figure 4(c,d) with figure 4(a,b). The primary
difference between Ri0 = 0.14 and Ri0 = 0.16 is that for the latter value, mixing does
not correlate negatively with buoyancy flux in the period tO

3D < t < tS
3D and the time-

averaged contribution of S h3D is larger. This can be observed more clearly in figure 5,
which shows that for Ri0 = 0.14 there is a negative correlation between mixing and
buoyancy flux at zero lag while that negative peak (which is diagnostic of the central
role of APE conversion in mixing in low Re and low to medium Ri0 flows) disappears
for the Ri0 > 0.16 simulations. The correlation between A and mixing also increases
from Ri0 = 0.14 to Ri0 = 0.16, showing that the energy exchange between the SSI
and SPI and the background structured vortices becomes the dominant contributions to
mixing along with the SCI.

For the higher Ri0 cases illustrated in figures 4 and 5, the same trend holds. Mixing
is facilitated more and more by small-scale instabilities distinct from the SCI. In
fact, a comparison between all panels in figure 5 clearly illustrates this change in
behaviour. For all cases, the buoyancy flux is initially dominated by the roll-up of
the KH billow in the early stages of flow evolution, leading to the large positive
correlation at negative lag for each flow, a contribution which diminishes in magnitude
as Ri0 increases due to the suppression in the vertical extent of the vortex cores
(see figure 1). The decrease in the vertical extent of the vortex cores also leads to
a marked reduction in the vertical extent of the statically unstable layers within the
billow in which convective instability is realized at lower values of Ri0. Because
the effective Rayleigh number of these unstable regions scales as the cube of layer
thickness, the increased static stability (more accurately the increasing proximity of
the initial Richardson number to the critical value for the onset of inviscid instability)
of the initially parallel flow leads to suppression of the shear aligned convective
mode of secondary instability (Klaassen & Peltier 1985; Mashayek & Peltier 2012b).
Instead, for the flows with Ri0 > 0.16, there is a positive correlation between mixing
and the total buoyancy flux at zero lag. This can be understood physically since
the smaller-scale overturning for the braid-centred instabilities is located in a region
which is statically stable, and hence the overturning corresponds to positive buoyancy
flux, unlike that in the region surrounding the periphery of the primary billow core
for the flow with Ri0 = 0.14, where the fluid is locally statically unstable, and so
overturnings correspond to negative buoyancy flux. For intermediate Ri0 flows, these
overturnings lead to mixing which is characterized also by a positive correlation with
the three-dimensional buoyancy flux at zero lag, showing that the three-dimensional
overturnings associated with the secondary instabilities are still energetic as the mixing
is occurring. However, there is eventually a negative correlation between mixing and
three-dimensional buoyancy flux as the flow restratifies, and for the most strongly
stratified flow with Ri0 = 0.2 this restratification is actually contemporaneous with the
peak in irreversible mixing, leading to a negative correlation between H3D and M .

In the fully turbulent phase, at Ri0 = 0.14, buoyancy flux correlates negatively with
mixing (see figure 5) due to convective instability, and the peak of mixing activity
(due to convection) precedes proliferation of secondary shear and strain instabilities. In
the fully turbulent phase (beyond tS

3D), small-scale overturns due to shear instabilities
(which are microcosms of the original KH billow) lead to an increase in the total
buoyancy flux. We shall refer to these structures as small-scale coherent structures
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(SSCS). The existence of these structures relies inherently on the accessibility of a
wide range of energy-containing length scales, and hence sufficiently high Re.

As Ri0 increases to and beyond Ri0 = 0.16, the negative correlation between mixing
and total flux (which was shown in figure 4b and discussed above) disappears and
the lag between the emergence of shear and braid instabilities and mixing decreases,
so that for the two highest values of Ri0 in the figure, the lag tends towards zero.
This implies that mixing becomes increasingly influenced by instabilities other than the
classic convective instability (SCI) of the core, and that the more intense turbulence
at Ri0 = 0.16 is associated with the abundance of braid-centred secondary instabilities
which give rise to an increase in small-scale overturns manifested by a negative
turbulent buoyancy flux. This can be further observed by comparing the A curves in
figure 4(a,c,e,g) which quantify the anisotropic stretching of the small-scale turbulence
by the background coherent structures. While in the early stages of flow evolution
(i.e. prior to tS

2D) A is due to the primary KH billow (and is negligible), for the
post-transition period it represents stretching of turbulent structures by the localized
SSCS discussed above. As already noted, for Ri0 = 0.2, the vertical turbulent flux
has a strong negative correlation with mixing. This mixing is primarily due to
structures which are sufficiently large to facilitate numerous localized overturnings.
As is apparent in figure 2 for Ri0 = 0.2, the turbulent flux can be inferred to be highly
anisotropic, stronger in the horizontal than in the vertical. This is a very different
picture from that envisioned by Osborn (1980), which is based on assumption ‘I’, i.e.
that isotropic turbulence is responsible for producing the (turbulent) vertical buoyancy
flux. It is therefore clear that, even if the turbulence were stationary in this regime
of high Ri0, which it is not for the Reynolds number of 6000, application of (1.1)
(or variants thereof) to the quantification of diapycnal mixing associated with shear-
induced turbulence under initial Richardson number conditions that are only slightly
smaller than the Miles–Howard critical value would be highly inappropriate, since the
vertical buoyancy flux is not maintained by isotropic turbulence.

Another important observation follows by comparing the various rows of figure 4.
At lower Ri0, the flow evolution can be divided into three primary periods: an initial
period of turbulent growth, an intermediate period in which energetic turbulence
is maintained and may be approximated as stationary, and a final decaying period
(similar to the categorization of Shih et al. 2005). This categorization is not specific
to shear-layer turbulence and is applicable to other turbulence events such as breaking
of an internal wave or evolution of a stratified turbulent wake (Spedding 1997). In
general, it is only the intermediate period which may be characterizable by the quasi-
steady balance associated with assumption ‘S’ used in the derivation of (2.20) and
(1.1). It was shown in MP13 that this intermediate period makes up a larger fraction
of the whole lifecycle of turbulence with increase in the Reynolds number at a fixed
moderate degree of initial inviscid instability for Ri0 = 0.12. Our present analyses,
however, show that with increasing Richardson number towards the Miles–Howard
critical value, the intermediate period shrinks, and by Ri0 = 0.2 the flow evolution
includes only growth and decay periods. Therefore, it is clear that increase in bulk
Richardson number further limits the applicability of the Osborn formula by violating
assumption ‘S’ of stationary turbulence, and indeed, since the flow is continually
evolving, it seems unlikely that assumption ‘F’, that the turbulence is fully developed,
is appropriate either. Especially for values of Ri0 only slightly less than the critical
value of 1/4 for the onset of Kelvin–Helmholtz instability, the Osborn formula is
not appropriate as a parametrization of diapycnal mixing by the ensuing turbulent
breakdown of KH instability in a stratified mixing layer. For such idealized flows,
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FIGURE 6. (Colour online) Time-averaged quantities of the parameters plotted in figure 4
as a function of the Richardson number. Brackets represent time averaging. Parameters with
subscript 3D have been integrated only over the post-transition phase of the flow whereas
those with the subscript tot have been integrated over the whole lifecycle. The thin horizontal
line in (c) shows Rif = 1/3, consistent with the theoretical predictions of Caulfield et al.
(2004) and Tang et al. (2009). Note that all curves are obtained from cubic spline fits to data
points obtained from simulations for Ri0 = 0.12, 0.14, 0.16.0.18 and 0.2.

our analyses above demonstrate that the underlying central assumptions of the Osborn
model do not apply, due specifically to the fact that the turbulence is both non-
stationary and anisotropic. Furthermore, the observed mixing in this situation does not
exhibit the ‘general relationship between the dissipation rate and the buoyancy flux
due to the small-scale turbulent velocity fluctuations’ which was derived by Osborn in
his influential paper, and thus caution should be exercised in the use of that idealized
model to the evidently vastly more complex mixing events which occur in the world’s
oceans.

4. Discussion
As discussed in the previous section, it seems clear, at least qualitatively, that the

key assumptions (that the turbulence is fully developed, isotropic and stationary) of
the Osborn model are not appropriate to the stratified mixing layer at sufficiently
high Re and Ri0. Furthermore, we have demonstrated that the mixing is, at least
at intermediate Ri0, dominated by the ‘zoo’ of secondary instabilities introduced in
Mashayek & Peltier (2012a,b). To address the remaining central aims of this paper,
i.e. whether the mixing efficiency is a non-monotonic function of the bulk Richardson
number Ri0, and if so, at which value of Ri0 is the mixing most efficient, we now
turn our attention to quantitative consideration of the mixing efficiency of the various
flows. Figure 6 presents time averages of the quantities plotted in figure 4 as a
function of Ri0. Figure 6(a) shows that the buoyancy flux is not entirely due to the
post-transition turbulent flux, but that it is dominated by the larger-scale stirring due
to the primary KH billow (the contribution of which to total flux diminishes with
increase in Ri0) and by localized stirring due to small-scale instabilities growing inside
the mixing layer. Indeed, the turbulent flux may even have a negative contribution
as explained in the previous section. The maximum buoyancy flux occurs in the
range 0.14 < Ri0 < 0.16 and coincides with the range of maximal total mixing, as
shown in figure 6(b). The high flux in this range is undoubtedly due to the existence
of a large number of secondary instabilities which do not exist at either lower or
higher Ri0. This leaves an intermediate range of Ri0 in which the flow is richest in
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terms of the small-scale instabilities responsible for a rapid transition to turbulence.
Viscous dissipation is also maximal in this range because of the strength of the
three-dimensional perturbation field enriched by the high secondary instability activity,
implying that both the numerator and denominator of the mixing efficiency ηc as
defined in (2.19) are maximal for intermediate Ri0. It actually appears that the mixing
efficiency attains its maximum between Ri0 = 0.14 and Ri0 = 0.16, which is similar to
the range in which buoyancy flux is maximized.

This exhibits an interesting though perhaps fortuitous agreement with the predictions
of Tang et al. (2009) for stratified plane Couette flow, which of course is a completely
different flow from the one considered here. We speculate that there are two generic
characteristics of ‘optimal’ mixing which the two flows might share, which are indeed
effectively the physically motivated arguments presented by Linden (1979). Firstly,
it appears that, at least at sufficiently high Re, ‘efficient’ mixing (i.e. mixing with
large ηc) is directly associated with flows with high mixing (i.e. flows with large
values of the buoyancy flux in the numerator of ηc). Secondly, while at relatively low
bulk Richardson number the thickness of the turbulent layer can grow large, turbulent
diapycnal mixing is not highly efficient (disregarding the preturbulent laminar phase
of the flow, which is efficient due to negligible dissipation) as the stratification can
rapidly be homogenized. Conversely, at values of the Richardson number closer to the
Miles–Howard threshold, vertical flux, and the existence of instabilities which would
facilitate that flux, are suppressed. There is an intermediate range in which the mixing
layer is thick enough to host a large number of secondary (and tertiary) instabilities
which owe their existence to the presence of stratification, for example through the
baroclinic generation of vorticity. Thus, the intermediate regime is most effective in
maintaining a large vertical flux through efficient mixing. Since for both these classes
of flows Ri0 > 1/4 leads to complete suppression of instability, it is thus plausible that
flows with Ri0 ' 1/6 lie in this intermediate optimal regime.

Figure 6(b) shows that while the mixing averaged over the whole lifecycle of the
flow (solid curve) peaks over the range 0.14 < Ri0 < 0.16, the mixing during the
post-transition phase (i.e. t > tS

3D, dashed curve) is less variable with Ri0. Therefore,
it is the transition period of the flow (t0

3D < t < tS
3D) which contributes the most to

the maximization of the mixing at Ri0 ≈ 0.16. Figure 6(c) shows that the efficiency
of mixing during the post-transition phase varies in the range 1/4–1/3, with the
upper bound corresponding to Ri0 = 0.16. The total mixing efficiency corresponding
to the whole lifecycle, however, varies between 0.28 and 0.45, with the peak again at
Ri0 = 0.16 and the smallest values at high Ri0. Both figures 6(b) and 6(c) show that
the lifecycle-averaged (i.e. averaged over the period between t = 0 and t = tf , where
tf marks the final time of simulation at which the flow is fully relaminarized) and
turbulent phase-averaged (i.e. averaged between tS

3D and tf ) quantities merge at high
Ri0. We wish to emphasize that the existence of an intermediate range of values of the
bulk Richardson number Ri0 in which mixing is most efficient (and thus the validity
of the above arguments) is conditional upon the Reynolds number being sufficiently
high that the ‘zoo’ of secondary instabilities is fully populated so as to facilitate
enhanced mixing, as was discussed in detail in MP13. These are the mechanisms
for this particular flow by which substantially enhanced (and Ri0-dependent) mixing
can occur. Therefore, it is clear that the stratified mixing layer does indeed exhibit
non-monotonic variation of mixing efficiency with Ri0.

Finally, we are now in a position to test quantitatively the validity of the Osborn
(1980) method of calculating an effective diapycnal diffusivity (described in (1.1))
by revisiting again the three basic assumptions upon which this method is based:
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assumption ‘F’ of fully developed turbulence; assumption ‘S’ of stationary turbulence
and assumption ‘I’ of isotropy. In (4.1), we repeat for clarity (from (2.12)) the
complete balance of various terms contributing to evolution of the turbulent kinetic
energy and in (4.2), we repeat (from (2.20)) the reduced balance considered by Osborn
(1980):

complete balance
1

2K3D

d
dt

K3D =R3D +S h3D +A −H3D −D3D, (4.1)

Osborn (1980) balance R3D =H3D +D3D. (4.2)

It was shown in figure 4 that while the flow evolves into a fully developed turbulent
phase beyond tS

3D, turbulent kinetic energy (thick black dashed lines in figure 4a,c,e,g)
decays afterwards. Although at low to intermediate values of the bulk Richardson
number Ri0 (such as those considered in MP13 and in the case Ri0 = 0.14 here)
there exists an extended period of weak decay of the turbulence which one can
treat as a ‘stationary period’, this phase shrinks in time with increase in Ri0 and
in flows with moderately high Ri0, assumption ‘S’ of stationary turbulence in (4.2)
completely breaks down, at least for the value of the Reynolds number of 6000 and
Prandtl number of unity upon which all of the analyses in this paper have been
based. Moreover, we showed in figure 4 that there exists a non-negligible shear-driven
exchange of energy between the turbulent structures and the background billow upon
which turbulence has grown (i.e. S h3D) as well as a non-negligible contribution due
to deformation of anisotropic turbulent structures by the background billow (i.e. A ).
Both S h3D and A exist due to anisotropy in the flow and are comparable to (if not
larger than) the other terms in the Osborn balance of (4.2). Therefore, assumption ‘I’
of isotropy also fails. A final and perhaps the most lethal blow to the ability of (4.2)
to represent accurately the buoyancy flux in our simulations actually comes not from
the failure of the three underlying assumptions mentioned above, but rather from the
incorrect modelling argument that the turbulent buoyancy flux accounts for the total
flux. It was shown in figure 4 that coherent structures (such as the primary KH billow
and the attendant ‘zoo’ of secondary instabilities) which exist at scales larger than the
turbulent fluctuations contribute significantly to the effective flux and that the turbulent
flux can in fact contribute negatively to the upward flux in some periods of flow
evolution. As pointed out by Ivey et al. (2008), the important contribution of overturns
at scales larger than that of turbulence to the buoyancy flux often goes unaccounted for
in estimation of the flux.

To formally quantify the error (due to the inapplicability of the underlying
assumptions) associated with application of the Osborn balance (4.2) to our numerical
experiments, in figure 7 we plot the difference between the left- and right-hand sides
of the balance, normalized by the total dissipation for all the cases discussed in this
study. All the curves in the plot correspond to the fully developed turbulent phase
(t > tS

3D) of the flows, which is most suitable for direct comparison with (4.2). As is
clearly shown in the figure, for the whole period of fully developed turbulence, (4.2)
breaks down. At early stages after tS

3D, large errors are associated with the existence of
remnants of the several secondary instabilities which facilitated transition to turbulence,
and thus lead to a large influence of anisotropy and non-stationarity effects on the
failure of balance. At later times shown in the plot, turbulence is decaying and thus is
inherently non-stationary. For the mid-range period of each curve, the non-negligible
influence of A and S h3D contributes to errors comparable to the total dissipation
rate. Figure 7 also illustrates the fact that the duration of the turbulent phase of
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FIGURE 7. (R3D−H3D−D3D)/D plotted versus time for the fully developed turbulent phase
of flow (t > tS

3D) as a measure of error associated with balance (4.2) due to Osborn (1980).

flow evolution diminishes with increase of the Richardson number, as was previously
pointed out in the discussion of figure 4. Thus, figure 7 demonstrates breakdown of
the assumptions of ‘S’ and ‘I’ in the fully developed turbulent phase of flow evolution.
Noting that the balance (4.2) is not even applicable to periods prior to tS

3D, and that
the preturbulent phase makes a non-negligible contribution to the time-averaged net
buoyancy flux, our analysis questions the applicability of (1.1) to the estimation of
an effective turbulent diffusivity in stratified shear layers. Furthermore, based on the
above discussion, it is clear that the definition of the flux Richardson number given
in (2.21) (which is commonly employed in the oceanographic community), is not an
accurate measure of the mixing efficiency and can deviate from the more accurate
definition given by (2.19) significantly. This deviation at Richardson numbers which
are only slightly below the critical value exists both because the turbulent flux does
not account for the total buoyancy flux and because the buoyancy flux is not precisely
equivalent to diapycnal mixing due to the existence of stirring at scales larger than the
turbulent structures.

We conclude by pointing out once again that the general conclusions of this work
are expected not to be unique to the particular framework on which our analyses are
based nor to the specific choice of shear instability which we study. The animations
of our numerical simulations available as supplementary materials show that once the
layer becomes unstable, it becomes rife with many different instabilities and wave
breaking events. Therefore, the KH billows examined in this work merely provide
a pathway to turbulence and can themselves be considered as sub-structures within
larger dynamical systems, just as much smaller KH billows grow on the braid of
our primary KH billows. Studies on internal wave breaking often also lead to results
suggestive of great variations in mixing properties with changes in the background
flow parameters. We expect that the picture of vigorous ‘instabilities’, which grow
preferentially at some intermediate value of bulk Richardson number, leading to a
non-monotonic dependence of mixing efficiency upon some appropriate Ri0, may be
generic, provided the Reynolds number of the flow is sufficiently high. Such mixing
appears to be inherently transient, with a finite characteristic relaxation time allowing
for regularization of the interfaces which must inevitably develop. We aim to report
on the dynamics of such layered flows in due course, in particular considering their
characteristic depth and drawing connections to the ‘stratified turbulence’ self-similar
scaling predicted by Billant & Chomaz (2001) and observed numerically at sufficiently
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high buoyancy Reynolds number, as defined in (1.2) (see for example Riley & de
Bruyn Kops 2003 and Brethouwer et al. 2007).
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Appendix
In this appendix, we present the derivation of the evolution equation for the

kinetic energy associated with the three-dimensional perturbation velocity, (2.12). The
following derivation closely follows that of Laprise & Peltier (1989), Klaassen &
Peltier (1991), Smyth & Peltier (1991) and Caulfield & Peltier (2000).

We are primarily interested in the initial development of three-dimensional
perturbations which grow on the background KH billow. So, we begin by linearizing
the governing equations about the spanwise averaged flow to estimate σ3d, the
instantaneous growth rate of the three-dimensional perturbation velocity, noting that
instantaneously |u3D| ∝ eσ3Dt. Beginning from the Boussinesq governing equations
introduced in § 2, we divide the total flow fields into a basic time-evolving two-
dimensional state, and three-dimensional perturbation fields. This decomposition may
be written explicitly as

f (x, y, z, t)= f̃ (x, z, t)+ f ′(x, y, z, t), (A 1)

where f represents any one of the three components of the velocity field or the density
or pressure fields. The corresponding fields of the two-dimensional background flow
are represented by f̃ and the three-dimensional perturbations to the background fields
are represented by f ′. For the specific case of three-dimensionalization of KH billows
discussed in this paper, the background fields include the original shear and density
layers and the over-growing KH billow:

Ũ = Ū + u2D, W̃ = 0+ w2D, ρ̃ = ρ̄ + ρ2D, (A 2)

where u2D, w2D and ρ2D correspond to the KH billow. Upon substitution of (A 1) into
the governing equations, and linearizing in the perturbations, the coefficients of the
various perturbation terms in the resulting equations comprise the f̃ fields and their
derivatives. These coefficients are all independent of the cross-stream y-coordinate and
are periodic in x with the same wavelength as the primary KH billow. Hence, we may
separate the structures of the perturbation fields as

f ′(x, y, z, t)= f3D(x, z, t)ei(bx+dy), (A 3)

in which f3D(x, z, t) is periodic in x and y, and b and d are the streamwise and
spanwise wavenumbers of the three-dimensional perturbations. Equation (A 3) may be
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further simplified by noting that the three-dimensional perturbations of interest to us
grow to finite amplitude very quickly compared with the evolution of the background
two-dimensional flow (Mashayek & Peltier 2013). We can therefore safely ignore the
time dependence of the background flow coefficients, and so (A 3) is reduced to the
form

f ′(x, y, z, t)= f3D(x, z)ei(bx+dy)+σ3Dt. (A 4)

Upon substitution of the total fields f̃ + f3Dei(bx+dy)+σ3Dt into the governing equations,
and after subtraction of the background two-dimensional flow, the resulting linearized
equations become

σ3Du3D =−Ũ(∂x + ib)u3D − W̃∂zu3D

− (∂x + ib)Ũu3D − Ũzw3D − (∂x + ib)p3D + Re−1∇2u3D, (A 5)

σ3Dv3D =−Ũ(∂x + ib)v3D − W̃∂zv3D − idp3D + Re−1∇2v3D, (A 6)
σ3Dw3D =−Ũ(∂x + ib)w3D − W̃∂zw3D

− (∂x + ib)W̃u3D − W̃zw3D − ∂zp3D + Riρ3D + Re−1∇2w3D, (A 7)
σ3Dρ3D =−Ũ(∂x + ib)ρ3D − W̃∂zρ3D

− (∂x + ib)ρ̃u3D − ρ̃zw3D + (RePr)−1∇2ρ3D, (A 8)
0= (∂x + ib)u3D + idv3D + ∂zw3D. (A 9)

We may now construct a budget for the kinetic energy density of the three-dimensional
perturbations, K3D = 1/2(u2

3D + v2
3D + w2

3D), by taking[
(A 5)× u∗3D + (A 5)× u3D + (A 6)× v∗3D + (A 6)× v3D

+ (A 7)× w∗3D + (A 7)× w3D

]
(A 10)

(where stars represent complex conjugates), and by averaging the resulting equation for
K over the three-dimensional spatial domain to obtain (2.12). Note that in the last
step we employed (A 2) and also we assumed that Pr = 1. The spatial averaging is
done through

〈〉xyz =
1

LxLyLz

∫ Lx

0

∫ Ly

0

∫ Lz

0
dx dy dz, (A 11)

where Lx, Ly and Lz are the streamwise, spanwise, and vertical dimensions of the
computational domain, respectively.
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